Unsaturated Steroids. Part 12. ${ }^{1}$ Synthesis of $1 \alpha, 3 \beta$-Dihydroxy-24-nor-9,10-secochola-5,7,10(19)trien-23-oic (Calcitroic) Acid and of the Cholic-and 25Homocholic Acid Analogues

Brian R. de Costa, Nandor Makk, John M. Midgley, Najmuddin T. Modi, Robert A. Watt, and W. Basil Whalley*
The School of Pharmacy, University of London, 29/39 Brunswick Square, London. WC1N 1AX

Abstract

The three title compounds have been synthesized by the same general method. Thus, methyl 3β-hydroxy-24-nor-5 α-chol-7-en-23-oate ($3 ; \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$), derived from 3β-acetoxypregn-7-ene-22-carbaldehyde (2), gave methyl 3 -oxo-24-nor- 5α-chol-7-en-23-oate ($4 ; \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{CH}_{3}$). Bromination of this to the $2 \xi, 4 \xi$-dibromo derivative ($4 ; R=B r, R^{\prime}=M e$) followed by dehydrobromination formed the corresponding $1,4,7$-triene- 3 -one (5). The corresponding enol acetate (6) was reduced to the $1,5,7$-triene (7) which was converted into the adduct ($8 ; \mathrm{R}=\mathrm{H}$) with 4 -phenyl-1,2,4-triazoline-3,5-dione; the 3β-dimethyl- t butylsilylether of $(8 ; R=H)$ gave the $1 \alpha, 2 \alpha$-epoxide ($9 ; R=\mathrm{Me}_{2} \mathrm{Bu}^{\text {' }} \mathrm{Si}$). Removal of the silylethergroup with acid, and then of the triazoline residue with pyridine-1,5-diazabicyclo[4.3.0] non-5-ene gave methyl 3β -hydroxy-1 $\alpha, 2 \alpha$-epoxy- 24 -norchola-5,7-dien-23-oate (10; $\mathrm{R}=\mathrm{Me}$). Reduction of the corresponding acid ($10 ; \mathrm{R}=\mathrm{H}$) gave $1 \alpha, 3 \beta$-dihydroxy-24-norchola-5,7-dien-23-oic acid (11; $\mathrm{R}=\mathrm{H}$). Photolysis/thermolysis of the corresponding methyl ester ($11 ; \mathrm{R}=\mathrm{Me}$) followed by saponification gave $1 \alpha, 3 \beta-$ dihydroxy-24-nor-9,10-secochola-5,7,10(19)trien-23-oic acid (calcitroic acid) (1; $\mathrm{R}=\mathrm{H}, \boldsymbol{n}=1$). The analogous cholic ($1 ; \mathrm{R}=\mathrm{H}, n=2$) and 25 -homocholic acid ($1 ; \mathrm{R}=\mathrm{H}, n=3$) derivatives were similarly synthesized.

Intensive investigation ${ }^{2}$ of the metabolism of $1 \alpha, 25$-dihydroxyvitamin D_{3} has resulted in the identification ${ }^{3}$ of $1 \alpha, 3 \beta$ -dihydroxy-9,10-seco-24-norchola-5,7,10,(19)-trien-23-oic acid ($1 ; \mathrm{R}=\mathrm{H}, n=1$) (calcitroic acid) as a major degradation product. The synthesis of calcitroic acid ${ }^{4}$ and of the 24 -cholic acid $^{5}(1 ; \mathrm{R}=\mathrm{H}, n=2)$ analogue have been described. However, the quantities of products available from both natural and synthetic sources have been minute; additionally the characterisation of the material (both natural and synthetic) has been minimal.

We now report rigorous syntheses of ($\mathbf{1} ; \mathrm{R}=\mathrm{H}, n=1$), ($\mathbf{1}$; $\mathrm{R}=\mathrm{H}, n=2$), and ($1 ; \mathrm{R}=\mathrm{H}, n=3$), with complete characterisation of the products, and their availability in mg quantities, starting from ergosterol. The three syntheses are

(1)

(3)

(4)
similar, hence only that of calcitroic acid is described in detail; this synthesis is similar to, but has many significant differences from, our original approach ${ }^{6}$ to this system.
Thus, condensation of 3β-acetoxypregn- 7 -ene-22-carbaldehyde (2), (from 5,6-dihydroergosterol), with the Wittig reagent from methoxymethylphenylphosphonium chloride, gave 3β -hydroxy-24-nor-5 α-chol-7-en-23-al ($\mathbf{3} ; \mathrm{R}=\mathrm{CHO}$). It has been established ${ }^{7}$ that the natural configuration at C -20 is retained in this reaction. Oxidation of $(\mathbf{3} ; \mathrm{R}=\mathrm{CHO})$ with silver oxide gave

(5)

(6)

(7)
the acid ($3 ; \mathrm{R}=\mathrm{CO}_{2} \mathrm{H}$). The methyl ester ($3 ; \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$) was oxidised with Jones' reagent to yield methyl 3-oxo-24-nor-5 α -chol-7-en-23-oate ($4 ; \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{CH}_{3}$). This ketone and its analogues readily formed the 3,3-dimethyl acetal when recrystallised from methanol. This is in accord with the strain imposed ${ }^{8}$ upon ring a by the $\mathrm{C}-7$ double bond and the diminution of this strain by the conversion of $\mathrm{C}-3$ into an sp^{3} hybridised carbon atom. The sequence of bromination (using tri- N -methylanilinium perbromide) and dehydrobromination, with lithium carbonate-dimethylformamide-lithium bromide, gave methyl 3 -oxo-chola-1,4,7-trien-23-oate (5), which was advantageously purified by 'flash' chromatography. With isopropenyl acetate-toluene- p-sulphonic acid, (5) gave methyl 3-acetoxy-24-norchola-1,3,5,7-tetraen-23-oate (6), which because of its incipient instability was reduced immediately with calcium borohydride to methyl 3β-hydroxy-24-norchola-1,5,7-trien-23oate (7). To obtain high yields in this step particular attention must be paid to the purity and dryness of the calcium chloride used for the preparation of the calcium borohydride.
After conversion of (7) into the adduct ($8 ; \mathrm{R}=\mathrm{H}$) with 4-phenyl-1,2,4-triazoline-3,5-dione, the dimethyl-t-butylsilyl ether (8; $\mathrm{R}=\mathrm{Me}_{2} \mathrm{Bu}^{\mathrm{t}} \mathrm{Si}$) was oxidised with m-chlorperbenzoic acid to

(8)

(9)

(10)

(11)
give, exclusively, the $1 \alpha, 2 \alpha$-epoxide $\left(9 ; \mathrm{R}=\mathrm{Me}_{2} \mathrm{Bu}^{\mathrm{i}} \mathrm{Si}\right)$. As with analogous compounds, the adduct $(9 ; R=H)$ retained solvent and did not furnish satisfactory elemental analyses. The n.m.r. and mass spectra (FAB), however, were satisfactory and the silyl ether ($8 ; \mathrm{R}=\mathrm{Me}_{2} \mathrm{Bu}{ }^{\prime} \mathrm{Si}$) and its epoxide $(9 ; R=$ $\mathrm{Me}_{2} \mathrm{Bu} \mathrm{Si}^{1}$) furnished appropriate elemental analyses. Removal of the silyl ether group from ($9 ; \mathbf{R}=\mathrm{Me}_{2} \mathrm{Bu}^{\mathbf{t}} \mathrm{Si}$) occurred satisfactorily with acetic acid-tetrahydrofuran at $60^{\circ} \mathrm{C}$, to yield the adduct $(9 ; \mathrm{R}=\mathrm{H})$, from which the triazoline residue was removed ${ }^{9}$ by boiling pyridine-1,5-diazabicyclo[4.3.0]non-5ene to yield ($10 ; \mathrm{R}=\mathrm{Me}$). Hydrolysis, at room temperature of $(10 ; R=M e)$ gave the acid ($10 ; \mathrm{R}=\mathrm{H}$) which was reduced with lithium borohydride in boiling tetrahydrofuran to $1 \alpha, 3 \beta$-di-hydroxy-24-norchola-5,7-dien-23-oic acid (11; $\mathrm{R}=\mathrm{H}$). The ester (11; $\mathrm{R}=\mathrm{Me}$) was formed using diazomethane. Photolysis of this ester, or more satisfactorily of the $1 x, 3 \beta$-di- O-acetate, followed by thermal equilibration, saponification and final purification of the product by p.l.c. on silica-silver nitrate gave $1 \alpha, 3 \beta$-dihydroxy-24-nor-9,10-seco-5,7,10(19)-cholatrien-23-oic acid (calcitroic acid) complete for the first time with melting point, elemental analysis, and n.m.r. spectrum. The cholic and 25 -homocholic acid analogues were similarly prepared (and characterised) from the analogous acids; there was advantageous modification, in certain cases, of the experimental protocol. These compounds are presently being assayed for biological activity. During the development of this route to the $1 x$-functionalised system, we investigated the protection of the terminal carboxy residue as the trichloroethyl ester, since this group may be more easily removed reductively as opposed to hydrolytically.
Thus methyl 3 -oxo- 5α-chol-7-en-24-oate $\left(4 ; R=H, R^{\prime}=\right.$ Me) was hydrolysed to the acid (4; $R=R^{\prime}=H$) which was esterified with $2,2,2$-trichloroethanol to yield $2^{\prime}, 2^{\prime}, 2^{\prime}$-trichloro-ethyl-3-oxo-5 α-chol-7-en-24-oate ($4 ; \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{CCl}_{3}$). This ester was converted into 2,2,2-trichloroethyl 3-acetoxy-chola-1,3,5,7-tetraen-24-oate, which unfortunately gave a complex mixture on reduction with calcium borohydride. Even this mild reducing reagent apparently removed the trichloroethyl residue (at least in part). Hence this approach was abandoned.

Experimental

Optical rotations were performed in chloroform, unless stated otherwise, and at $20^{\circ} \mathrm{C}$ N.m.r. spectra were determined on a 60 MHz R12A Perkin-Elmer or an 80 MHz WP 80 SY Bruker in CDCl_{3} unless stated otherwise. U.v. spectra were determined in 96% ethanol. Mass spectra and accurate mass measurement were recorded on a ZAB-1F (VG Analytical Ltd.,) mass spectrometer: FAB mass spectra were recorded from solutions in chloroform in a substrate of glycerol. Light petroleum refers to the fraction of b.p. $60-80^{\circ} \mathrm{C}$. Ether refers to diethyl ether.

Methyl 3 β-Hydroxy-24-nor-5 α-chol-7-en-23-oate.-A solution of 3β-acetoxy-23,24-dinor-5 α-chol-7-en-22-al (10.4 g) in tetrahydrofuran (80 ml) was added with stirring during 15 min , at $20^{\circ} \mathrm{C}$, to a solution of methoxymethyltriphenylphosphorane [prepared from methoxymethyltriphenylphosphonium chloride $(4.6 \mathrm{~g})$ in tetrahydrofuran (400 ml), and n-butyl-lithium (1.65 m ; 72 ml) in the same solvent] in tetrahydrofuran (400 ml). After 1 h the reaction mixture was diluted with water (200 ml), and most of the organic solvent was removed under reduced pressure at $40^{\circ} \mathrm{C}$. The oily product was isolated with ether (400 ml), and the solvent removed. A solution of the residue in dioxane (300 ml) containing sulphuric acid ($1 \mathrm{~m} ; 66 \mathrm{ml}$) was stirred at $70^{\circ} \mathrm{C}$ during 30 min , when the cooled mixture was neutralised by the addition of aqueous sodium hydrogen carbonate and the dioxane removed under reduced pressure. A
solution of the residue in ethyl acetate (200 ml) was washed, dried, evaporated, and the impure residue chromatographed on silica from ether-light petroleum (1:5) to give 3β-hydroxy-24-nor-5 α-chol-7-en-23-al (4.8 g) as prisms, m.p. $117^{\circ} \mathrm{C}$, from light petroleum-methylene chloride; $[\alpha]_{\mathrm{D}}-24^{\circ}(c 3.44) ; \tau 0.27(1 \mathrm{H}$, d, J $3 \mathrm{~Hz}, \mathrm{CHO}$) (Found: C, 79.6; H, 10.2\% ${ }^{\circ} M^{+}, 344.2715$. $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.2 ; \mathrm{H}, 10.5 \% ; M, 344.2715$). A suspension of silver oxide [prepared by the addition of aqueous sodium hydroxide ($10 \% \mathrm{w} / \mathrm{v} ; 80 \mathrm{ml}$) to silver nitrate (8.9 g) dissolved in water (150 ml)] was dissolved by the addition of aqueous ammonia $(d, 0.88 ; 100 \mathrm{ml})$ and stirred and maintained at $70^{\circ} \mathrm{C}$, during the addition (15 min) of a solution of this aldehyde $(3 \mathrm{~g})$ in methanol (300 ml). After removal of the methanol under reduced pressure the reaction mixture was extracted with ether $(2 \times 200 \mathrm{ml})$ and the aqueous residue acidified with hydrochloric acid $(10 \% \mathrm{w} / \mathrm{v} ; 75 \mathrm{ml})$. The precipitated 3β -hydroxy-24-nor-5 α-chol-7-en-23-oic acid (2.2 g), extracted with ethyl acetate, crystallised from acetone as needles, m.p. 212$213^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+12^{\circ}(c$ 1.8, in methanol) (Found: C, 76.9; H, $10.3 \% ; M^{+}, 360.2666 . \mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{3}$ requires C. $76.6 ; \mathrm{H}, 10.1 \% M$, 360.2664). Prepared quantitatively from this acid (5.9 g) with ethereal diazomethane methyl 3β-hydroxy- 24 -nor- 5α-chol-7-en23 -oate formed prisms, m.p. 173-175 ${ }^{\circ} \mathrm{C}$, from methanol; $[\alpha]_{\mathrm{D}}$ -10.3° (c 4.63); $\tau 6.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right.$) (Found: C, 77.0 ; H, $10.1 \% ; M^{+}, 374.2820 . \mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{3}$ requires C, $77.0 ; \mathrm{H}, 10.2 \% ; M$, 374.2821).

Methyl 3β-Hydroxy-5 α-chol-7-en-24-oate.-A solution of 3β -acetoxy-23,24-dinor-5 α-chol-7-en-22-al (8.11 g) and carboxymethylenetriphenylphosphorane (8.37 g) in tetrahydrofuran (450 ml) was refluxed for 6 h . Next day the solvent was removed under reduced pressure and the product purified by chromatography from ethyl acetate-light petroleum ($1: 10$) on silica to yield methyl 3β-acetoxy- 5α-chol-7,22E-dien- 24 -oate (6.1 g) as needles, m.p. $131^{\circ} \mathrm{C}$, from ether-methanol; $[\alpha]_{\mathrm{D}}+44^{\circ}(c 3.58)$: $\tau 3.11\left(\mathrm{H}, \mathrm{dd}, J_{22.23} 15 \mathrm{~Hz}, J_{22.20} 9 \mathrm{~Hz}, 22-\mathrm{H}\right), 4.24\left(\mathrm{H}, \mathrm{d}, J_{22.23}\right.$ $15 \mathrm{~Hz}, 23-\mathrm{H}$), and $4.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ (Found: C, $76.0 ; \mathrm{H}$, $9.2 \% ; M^{+}, 428.2926 . \mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{4}$ requires $\mathrm{C}, 75.7 ; \mathrm{H}, 9.4 \% ; M$, 428.2929).

Hydrogenation of a solution of this diene (5 g) in ethyl acetate $(300 \mathrm{ml})$, containing platinic oxide $(0.3 \mathrm{~g})$ occurred during 2.5 h to yield methyl 3β-acetoxy- 5α-chol-7-en-24-oate $(5 \mathrm{~g})$ as needles, m.p. $121^{\circ} \mathrm{C}$, from ether-methanol; $[\alpha]_{\mathrm{D}}-13.5^{\circ}(c 3.1)$ (Found: $\mathrm{C}, 75.2 ; \mathrm{H}, 9.8 \% ; M^{+}, 430.3084 . \mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{4}$ requires, $\mathrm{C}, 75.3 ; \mathrm{H}$, $9.8 \% ; M, 430.3083$). Hydrolysis of a solution of this acetate (2 g) in methanol (200 ml), by the addition of potassium hydroxide (2 g) dissolved in methanol (20 ml), during 5 min , at $40^{\circ} \mathrm{C}$ gave methyl 3β-hydroxy-5 α-chol-7-en-24-oate (1.7 g) as needles, m.p. $110-112^{\circ} \mathrm{C}$, from aqueous methanol; $[\alpha]_{\mathrm{D}}-5.9^{\circ}$ (c 3.73); τ $6.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ (Found: C, $76.2 ; \mathrm{H}, 10.00 \% ; \mathrm{M}^{+}$, 388.2978. $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 76.0 ; \mathrm{H}, 10.3 \%$; $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{3}$ requires $M, 388.2977$).

Methyl 3ß-Hydroxy-25-homo-5 α-chol-7-en-25-oate.-A stirred solution of 3β-acetoxy-23,24-dinor- 5α-chol-7-en-22-al (9.27 g) and of (2-carboxyethyl)triphenylphosphonium bromide $(20.76 \mathrm{~g})$ in a mixture of dimethylformamide (100 ml) and toluene (100 ml) was treated $\left(\mathrm{N}_{2}\right)$ at $0^{\circ} \mathrm{C}$ with sodium hydride $(12 \mathrm{~g})$. After 2 h at $0^{\circ} \mathrm{C}$, and a further 2.5 h at $20^{\circ} \mathrm{C}$, the excess of sodium hydride was destroyed (water added cautiously), and sulphuric acid ($7 \% \mathrm{w} / \mathrm{v} ; 340 \mathrm{ml}$) added. The product was isolated by extraction with isopropylalcohol-ether (1:9, $2 \times$ 300 ml) and the extract esterified by the addition of an excess of ethereal diazomethane. The crude product was acetylated (pyridine-acetic anhydride) during 12 h to yield, after purification by chromatography on silica from ether-light petroleum (1:6) followed by crystallisation from ether-methanol, methyl 3β-acetoxy-25-homo-5 α-chol-7,22-dien-25-oate (7 g) as plates,
m.p. $115^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-9.31^{\circ}(c 5.69)$; $\tau 7.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCOCH}_{3}\right), 6.33$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), 4.58 ($2 \mathrm{H}, \mathrm{m}, 22-$, 23-H) (Found: C, $76.4 ; \mathrm{H}$, $9.8 \% ; M^{+}, 442.3082 . \mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{4}$ requires $\mathrm{C}, 76.0 ; 9.6 \% ; M$, 442.3083). Hydrogenation of this diene (5 g) in ethyl acetate (200 $\mathrm{ml})$ containing platinic oxide $(0.5 \mathrm{~g})$ during 2.5 h gave methyl 3β -acetoxy-25-homo-5 α-chol-7-en-25-oate (5 g) as prisms, m.p. $126^{\circ} \mathrm{C}$, from ether-methanol; $[\alpha]_{\mathrm{D}}-9.9^{\circ}(c 3.28) ; \tau 8.00(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCOCH}_{3}\right)$ and $6.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ (Found: $\mathrm{C}, 75.5 ; \mathrm{H}, 9.8 \%$; M^{+}, 444.3239. $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{4}$ requires $\mathrm{C}, 75.6 ; \mathrm{H}, 10.0 \% ; M$, 444.3240).

Hydrolysis of this acetate (4.0 g) with potassium hydroxide $(4.0 \mathrm{~g})$ in methanol (400 ml) during 5 min at $40^{\circ} \mathrm{C}$, gave methyl 3β-hydroxy-25-homo-5 α-chol-7-en-25-oate (3.55 g) as microneedles, m.p. 122- $124^{\circ} \mathrm{C}$, from ether-light petroleum; $[\alpha]_{\mathrm{D}}$ $+0.33^{\circ}(c 6.15) ; \tau 6.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ (Found: C, 77.3; H, 10.60; $M^{+}, 402.3135 . \mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{3}$ requires C, 77.6; $\mathrm{H}, 10.5 \% ; M$, 402.3134).

Methyl 3-Oxo-24-norchola-1,4,7-trien-23-oate (5).-Jones's reagent (2 M) was added slowly with stirring to a solution of methyl 3β-hydroxy-24-nor-5 α-chol-7-en-23-oate (6.13 g) until reaction (t.l.c.) was complete; excess of reagent was then destroyed by the addition of methanol $(5 \mathrm{ml})$, followed by water $(100 \mathrm{ml})$. Most of the solvent was removed under reduced pressure and the product extracted with ethyl acetate $(2 \times 200$ ml) to yield methyl 3-oxo-24-nor-5 α-chol-7-en-23-oate (5.6 g) as needles, m.p. $167-168^{\circ} \mathrm{C}$, from ether-light petroleum; $[\alpha]_{\mathrm{D}}$ $+20.7^{\circ} ; v_{\max .} 1702 \mathrm{~cm}^{-1}(\mathrm{CO})$ (Found: C, $77.0 ; \mathrm{H}, 9.8 \% ; M^{+}$, 372.2665. $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{3}$ requires $\mathrm{C}, 77.4 ; \mathrm{H}, 9.7 \% ; M, 372.2664$).

Methyl 3-oxo-5x-chol-7-en-24-oate formed plates, m.p. $121^{\circ} \mathrm{C}$, from ether-light petroleum; $[\alpha]_{\mathrm{D}}+28.8^{\circ}$; $v_{\text {max. }} 1705$ cm^{-1} (CO) (Found: C, $77.8 ; \mathrm{H}, 9.9 \% ; M^{+}, 386.2817 . \mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{3}$ requires C, $77.7 ; \mathrm{H}, 9.9 \%$; $M, 386.2820$). Crystallisation of this ester from methanol gave (quantitavely) methyl 3,3-dimethoxy5α-chol-7-en-24-oate as needles, m.p. $128^{\circ} \mathrm{C}$; $\tau 6.80(3 \mathrm{H}$, s, $\left.\mathrm{OCH}_{3}\right), 6.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ (Found: C, $74.9 ; 10.3 \% ; M^{+}$, 432.3241. $\mathrm{C}_{2}{ }_{7} \mathrm{H}_{44} \mathrm{O}_{4}$ requires $\mathrm{C}, 75.0 ; \mathrm{H}$, 10.3%; $M, 432.3239$).

Methyl 3-oxo-25-homo-5 α-chol-7-en-25-oate gave needles, m.p. $131^{\circ} \mathrm{C}$, from ether-light petroleum; $[\alpha]_{\mathrm{D}}+23.1^{\circ}$; $v_{\text {max }} 1717 \mathrm{~cm}^{-1}(\mathrm{CO})$ (Found: C, $77.6 ; \mathrm{H}, 10.1 \% ; M^{+}, 400.2977$. $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{3}$ requires $\mathrm{C}, 78.0 ; \mathrm{H}, 10.1 \% ; M, 400.2977$).

Phenyltrimethylammonium perbromide (4.13 g) was added during 0.5 h , to a stirred solution of methyl 3-oxo-24-nor-5a-chol-7-en-23-oate (4.1 g) in tetrahydrofuran (300 ml) at $0^{\circ} \mathrm{C}$, followed by more perbromide (4.1 g) during a further 40 min . After 4 h at room temperature the reaction mixture was diluted with water $(500 \mathrm{ml})$ and the product extracted with ethyl acetate ($2 \times 200 \mathrm{ml}$). The resultant, unstable methyl $2 \xi, 4 \xi$-dibromo-3-oxo-24-nor- 5α-chol-7-en-23-oate (5.9 g) formed micro-needles, m.p. $144-145^{\circ} \mathrm{C}$ (decomp.), from ether-light petroleum; $[x]_{\mathrm{D}}$ -17.2° (c 2.18) (Found: C, 54.7; H, 6.4\%; M^{+}, 530.0854. $\mathrm{C}_{24} \mathrm{H}_{34}{ }^{79} \mathrm{Br}^{81} \mathrm{BrO}_{3}$ requires C, $54.4 ; \mathrm{H}, 6.5 \% ; M, 530.0856$). The corresponding 2,4-dibromocholate formed needles, m.p. 148$149{ }^{\circ} \mathrm{C}$, from ether-light petroleum; $[\alpha]_{\mathrm{D}}{ }^{19}-14.9^{\circ}$ (c 2.17) (Found: C, 55.3; H, $6.5 \% ; M^{+}, 544.1010 . \mathrm{C}_{25} \mathrm{H}_{36}{ }^{79} \mathrm{Br}^{81} \mathrm{BrO}_{3}$ requires C, $55.2 ; \mathrm{H}, 6.7 \% ; M, 544.1010$), whilst the 25 -homoderivative formed micro-needles, m.p. $144-145^{\circ} \mathrm{C}$ (decomp.), from ether-light petroleum; $[\alpha]_{\mathrm{D}}-14.1^{\circ}$ (c 1.59) (Found: C, 55.7; H, $6.9 \% ; M^{+}, 558.1165 . \mathrm{C}_{26} \mathrm{H}_{38}{ }^{79} \mathrm{Br}^{81} \mathrm{BrO}_{3}$ requires C, $55.9 ; \mathrm{H}, 6.9 \%$; $M, 558.1167$).

A solution of unpurified methyl $2 \xi, 4 \xi$-dibromo-3-oxo- 24 -nor- 5α-chol-7-en-23-oate (5.5 g) in dimethylformamide (190 ml) containing anhydrous lithium bromide (5.5 g) and lithium carbonate $(11.0 \mathrm{~g})$ was stirred at $150^{\circ} \mathrm{C}$, in a stream of nitrogen, during 45 min . Purification of the product by flash column chromatography on silica from ethyl acetate-light petroleum (1:4) gave methyl 3-oxo-24-norchola-1,4,7-trien-23-oate (2.7 g)
as prisms, m.p. $126-128^{\circ} \mathrm{C}$, from ether-light petroleum; $[\alpha]_{\mathrm{D}}$ $+9.1^{\circ}$ (c 1.12); $\lambda_{\text {max. }} 242.5 \mathrm{~nm}(\varepsilon 13700) ; \tau 2.93\left(1 \mathrm{H}, \mathrm{d}, J_{1.2}\right.$ $10 \mathrm{~Hz}, 1-\mathrm{H}), 3.75\left(1 \mathrm{H}, \mathrm{dd}, J_{1.2} 10 \mathrm{~Hz}, J_{2.4} 2 \mathrm{~Hz}, 2-\mathrm{H}\right), 3.88(1 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}$), 4.74 ($1 \mathrm{H}, \mathrm{s}$ br, $7-\mathrm{H}$) (Found: C, $77.8 ; \mathrm{H}, 8.9 \% ; \mathrm{M}^{+}$, 368.2351. $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{3}$ requires $\mathrm{C}, 78.2 ; \mathrm{H}, 8.8 \% ; M, 368.2351$).

Methyl 3-oxochola-1,4,7-trien-24-oate formed prisms, m.p. $134-136^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+90.5^{\circ}$ (c 4.75); $\lambda_{\text {max. }} 241 \mathrm{~nm}$ ($\varepsilon 14300$) (Found: C, $78.6 ; \mathrm{H}, 9.0 \% ; M^{+}, 382.2508 . \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{3}$ requires C, $78.5 ; \mathrm{H}, 9.0 \%$; $M, 382.2507$).
The corresponding 25 -homo-1,4,7-triene formed needles, m.p. 133-134 ${ }^{\circ} \mathrm{C}$, from ether-light petroleum; $[\alpha]_{\mathrm{D}}-1.90^{\circ}(c 4.22)$; $\lambda_{\text {max }} 242 \mathrm{~nm}(\varepsilon 14100)$ (Found: C, 78.4; H, 9.2\%; $M^{+}, 396.2664$. $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{3}$ requires C, $78.7 ; \mathrm{H}, 9.2 \% ; M, 396.2664$).

Methyl 3ß-Hydroxy-24-norchola-1,5,7-trien-23-oate (7).Prepared as in ref. 6 from methyl 3-oxo-24-norchola-1,4,7-trien-23-oate (2.5 g), methyl 3-acetoxy-24-norchola-1,3,5,7-tetraen-23-oate (2.7 g) formed pale yellow plates, m.p. $142-143{ }^{\circ} \mathrm{C}$, from ether-methanol containing a trace of pyridine; $[\alpha]_{\mathrm{D}}-470^{\circ}$ (c 2.61); $\lambda_{\text {max. }} 251.5 \mathrm{~nm}(\varepsilon 11200)$; $\tau 4.04(3 \mathrm{H}, \mathrm{m} \mathrm{br}), 4.30(1 \mathrm{H}$, d), $6.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, and $7.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCOCH}_{3}\right)$ (Found: C, $76.3 ; \mathrm{H}, 8.4^{\circ} \% M^{+}, 410.2455 . \mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{4}$ requires $\mathrm{C}, 76.1 ; \mathrm{H}$, $8.4 \% ; M, 410.2457$).

The corresponding methyl 3-acetoxychola-1,3,5,7-tetraen-24oate formed pale yellow needles, m.p. $122-123^{\circ} \mathrm{C}$, from the same solvent; $[\alpha]_{\mathrm{D}}-490^{\circ}$ (c 1.68) (Found: C, 76.3; H, 8.5; M^{+}, 424.2612. $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{4}$ requires $\mathrm{C}, 76.4 ; \mathrm{H}, 8.6 \% ; M, 424.2614$) whilst the 25 -homo-analogue formed pale yellow plates, m.p. $93-95^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-480^{\circ} \mathrm{C}(c 1.06) ; \lambda_{\text {max. }} 252(\varepsilon 12200)$ and 360 $\mathrm{nm}(\varepsilon 9190)$ (Found: C, 76.8; H, 8.5\%; $M^{+}, 438.2771$. $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{4}$ requires $\mathrm{C}, 76.7 ; \mathrm{H}, 8.7 \% ; M, 438.2770$). Reduction of unpurified methyl 3-acetoxy-24-norchola-1,3,5,7-tetraen-23oate (2.75 g) as in ref. 6 gave methyl 3β-hydroxy- 24 -norchola-$1,5,7$-trien-23-oate (2.48 g) after purification from ether-light petroleum (1:5) on silica followed by crystallisation from ethermethanol, as plates, m.p. $170-171^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-150^{\circ}(c 1.9) ; \lambda_{\text {max }}$. $270(\varepsilon 8650), 280(8750)$, and $291 \mathrm{~nm}(4970) ; \tau 4.33(3 \mathrm{H}, \mathrm{m}, 1-$, $2-\mathrm{H}$ and $6-$ or $7-\mathrm{H}), 4.55(1 \mathrm{H}, \mathrm{m}, 7$ - or $6-\mathrm{H}), 5.72(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H})$, and $6.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ (Found: C, $77.9 ; \mathrm{H}, 9.3 \% ; M^{+}$, 370.2506. $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{3}$ requires $\mathrm{C}, 77.8 ; \mathrm{H}, 9.3 \%, M, 370.2507$).

The corresponding methyl 3β-hydroxychola-1,5,7-trien-24oate formed plates, m.p. $101-102{ }^{\circ} \mathrm{C}$, from ether-methanol; $[\alpha]_{\mathrm{D}}-190^{\circ}$ (c 1.3) (Found: C, 78.1; H, 9.4\%; $M^{+}, 384.2662$. $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{3}$ requires C, $78.1 ; \mathrm{H}, 9.4 \%, M, 384.2664$), whilst the 25-homo-analogue formed microprisms, m.p. $93-95^{\circ} \mathrm{C}$, from ether-light petroleum; $[\alpha]_{\mathrm{D}}-200^{\circ}(c 0.41)$ (Found: C, 78.6 ; H, $9.7 \% ; M^{+}, 398.2821 . \mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{3}$ requires $\mathrm{C}, 78.4 ; \mathrm{H}, 9.6 \% ; M$, 398.2820).
$1 \alpha, 3 \beta$-Dihydroxy-24-norchola-5,7-dien-23-oic Acid (11; $\mathbf{R}=$ H).-Prepared from methyl 3β-hydroxy-24-norchola-1,5,7-trien-23-oate (1.67 g) and 4-phenyl-1,2,4-triazoline-3,5-dione $(0.6 \mathrm{~g})$, as in ref. 6 , the $\operatorname{adduct}(8 ; \mathrm{R}=\mathrm{H})(1.23 \mathrm{~g})$ formed needles, m.p. $169-170^{\circ} \mathrm{C}$ (decomp.); $[\alpha]_{\mathrm{D}^{+}}-30^{\circ}$ (c 2.75) [Found: C , $70.8 ; \mathrm{H}, 7.3 ; \mathrm{N}, 7.4 \% ;(M+\mathrm{H})^{+}(\mathrm{FAB}), 546 . \mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires $\left.\mathrm{C}, 70.4 ; \mathrm{H}, 7.2 ; \mathrm{N}, 7.7 \% ;(M+\mathrm{H})^{+}, 546\right]$.

The dimethyl-t-butylsilyl ether ($8 ; \mathrm{R}=\mathrm{Me}_{2} \mathrm{Bu}^{\mathrm{t}} \mathrm{Si}$) (1.5 g), prepared by the method of ref. 6 from this adduct (1.23 g), formed a non-crystalline wax, having inter alia $\tau 2.61(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 3.65\left(2 \mathrm{H}, \mathrm{q}, J_{6.7} 8.6 \mathrm{~Hz}, 6-, 7-\mathrm{H}\right), 4.33(2 \mathrm{H}, \mathrm{bs}, 1-, 2-\mathrm{H}), 5.05$ ($1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H}$), 6.38 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), and $9.19(9 \mathrm{H}, \mathrm{s}, \mathrm{t}-\mathrm{Bu})$. Prepared as in ref. 6 from this ether (1.5 g), the epoxide formed a non-crystallisable pale yellow wax (1.4 g) having inter alia $\tau 2.61$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $3.70\left(2 \mathrm{H}, \mathrm{q}, J_{6.7} 8 \mathrm{~Hz}, 6-7-\mathrm{H}\right), 5.08(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H})$, $6.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, and $9.09(9 \mathrm{H}, \mathrm{s}, \mathrm{t}-\mathrm{Bu})$ (Found: $(\mathrm{M}+\mathrm{H})^{+}$ (FAB), 676. $\mathrm{C}_{38} \mathrm{H}_{53} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}+\mathrm{H}^{+}$requires 676).
A solution of crude epoxide (1.5 g) in tetrahydrofuran (75 ml), acetic acid (75 ml), and water (45 ml) was stirred at $60^{\circ} \mathrm{C}$. After 3
days the product was purified by chromatography from ether to yield the adduct of the $1 \alpha, 2 \alpha$-epoxide $(9 ; \mathrm{R}=\mathrm{H})(0.61 \mathrm{~g})$ as needles, m.p. $153^{\circ} \mathrm{C}$, from methanol-methylene chloride; $[\alpha]_{\mathrm{D}}$ $-55^{\circ}(c 1.56) ; \tau 2.58(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.61\left(2 \mathrm{H}, \mathrm{q}, J_{6.7} 8 \mathrm{~Hz}, 6-\right.$, 7-H), $4.98(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H})$, and $6.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ [Found: C , 68.1; $\mathrm{H}, 7.2 ; \mathrm{N}, 7.7 \% . M^{+}(\mathrm{FAB}), 562 . \mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires C , 68.4; $\mathrm{H}, 7.0 ; \mathrm{N}, 7.5 \% ; M$, (for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+} \mathrm{H}^{+}$) 562].

A solution of this epoxide adduct $(0.44 \mathrm{~g})$ in pyridine $(40 \mathrm{ml})$ containing 1,5 -diazabicyclo[4.3.0]non-5-ene (0.2 g) was refluxed $\left(\mathrm{N}_{2}\right)$ during 16 h , when the solvent was removed under reduced pressure and the residue dissolved in ethyl acetate. This extract was washed (i) with 5% (w/v) acetic acid and (ii) aqueous sodium hydrogen carbonate, dried, and evaporated when the residue was purified by flash chromatography on silica from ethyl acetate-light petroleum (1:3) to give methyl $1 \alpha, 2 \alpha$-epoxy3β-hydroxy-24-norchola-5,7-dien-23-oate ($\mathbf{1 0} ; \mathrm{R}=\mathrm{Me})(0.18 \mathrm{~g})$ which formed solvated needles, m.p. $181-182^{\circ} \mathrm{C}$, from light petroleum-methylene chloride; $[\alpha]_{\mathrm{D}}-140^{\circ}(c 0.94) ; \lambda_{\text {max. }} 268(\varepsilon$ 10900), 278.5 ($\varepsilon 11300$), and $290 \mathrm{~nm}(\varepsilon 6290)$; $\tau 4.27$ ($1 \mathrm{H}, \mathrm{d}, J_{6.7}$ $6 \mathrm{~Hz}, 6-$ or $7-\mathrm{H}), 4.57\left(1 \mathrm{H}, \mathrm{d}, J_{6.7} 6 \mathrm{~Hz}, 7-\right.$ or $\left.6-\mathrm{H}\right), 6.31(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{CH}_{3}$), and 6.67 and $6.96\left(2 \mathrm{H}, \mathrm{ABq}, J_{1.2} 4 \mathrm{~Hz}, 1-, 2-\mathrm{H}\right)$ [Found: C, $73.7 ; \mathrm{H}, 9.0 \% ; M^{+}$, $386.2457 . \mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{4} 0.5 \mathrm{H}_{2} \mathrm{O}$ requires C, $73.5 ; \mathrm{H}, 8.9 \% ; M$, (for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{4}$) 386.2457]. The acetate of this epoxide formed (quantitatively) needles, m.p. $170^{\circ} \mathrm{C}$., from methanol-methylene chloride; $\tau 4.29\left(1 \mathrm{H}, \mathrm{d}, J_{6.7} 6\right.$ $\mathrm{Hz}, 6-$ or $7-\mathrm{H}), 4.52\left(1 \mathrm{H}, \mathrm{d}, J_{6.7} 6 \mathrm{~Hz}, 7\right.$ - or $\left.6-\mathrm{H}\right), 6.37(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 7.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCOCH}_{3}\right)$, and 6.63 and $6.90(2 \mathrm{H}, \mathrm{ABq}$, $J_{1.2} 4 \mathrm{~Hz}, 1-, 2-\mathrm{H}$) (Found: C, $73.0 ; \mathrm{H}, 8.5 \% ; M^{+}, 428.2564$. $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{5}$ requires C, $72.9 ; \mathrm{H}, 8.5 \% ; M, 428.2563$). Methyl $3 \beta-$ hydroxy-1 $\alpha, 2 \alpha$-epoxy- 24 -norchola- 5,7 -dien- 23 -oate (0.18 g) dissolved in methanol (20 ml) containing potassium hydroxide (4.0 g) was maintained at $20^{\circ} \mathrm{C}$ during 7.5 h . Purified from acetone, $1 \alpha, 2 \alpha$-epoxy-3 β-hydroxy-24-norchola-5,7-dien-23-oic acid (10; R $=\mathrm{H})(0.16 \mathrm{~g})$ formed prisms, m.p. $212{ }^{\circ} \mathrm{C}$ (decomp.); $[\alpha]_{\mathrm{D}}-110^{\circ}$ (c 0.73 , in tetrahydrofuran) (Found: C, $74.5 ; \mathrm{H}, 8.5 \% ; M^{+}$, 372.2301. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{4}$ requires $\mathrm{C}, 74.2 ; \mathrm{H}, 8.7 \% ; M, 372.2301$). A solution of this epoxide (0.15 g) in tetrahydrofuran (45 ml) containing lithium borohydride (1.0 g) was refluxed $\left(\mathrm{N}_{2}\right)$ for 2.5 h. Purified from aqueous tetrahydrofuran, $1 \alpha, 3 \beta$-dihydroxy-24-norchola-5,7-dien-23-oic acid (11; $\mathrm{R}=\mathrm{H})(0.15 \mathrm{~g})$ formed plates, m.p. $244^{\circ} \mathrm{C}$ (decomp.); $[\alpha]_{\mathrm{D}}-130^{\circ}$ (c 0.61 , in tetrahydrofuran); $v_{\text {max. }} 3460,3040,2965(\mathrm{OH})$, and $1732 \mathrm{~cm}^{-1}\left(\mathrm{CO}\right.$ in $\left.\mathrm{CO}_{2} \mathrm{H}\right)$; $\lambda_{\text {max. }} 271(\varepsilon 10700), 281(11300)$, and $293 \mathrm{~nm}(6690)$ (Found: C, $73.3 ; \mathrm{H}, 9.1 \% ; M^{+}, 374.2452 . \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{4}$ requires C, $73.8 ; \mathrm{H}$, $9.2 \% ; M, 374.2457$). Prepared (quantitatively) from this acid using diazomethane in ether-methanol, methyl $1 \alpha, 3 \beta$-dihydroxy-24-norchola-5,7-dien-23-oate (11; $\mathrm{R}=\mathrm{Me}_{3}$) formed needles, m.p. $176{ }^{\circ} \mathrm{C}$, from acetone-light petroleum; $[\alpha]_{\mathrm{D}}-68^{\circ}(c 0.69)$; $\lambda_{\max } 271(\varepsilon 11500), 282(12200)$, and $294 \mathrm{~nm}(7300) ; \tau 4.27(1 \mathrm{H}$, d, $J_{6.7} 6 \mathrm{~Hz}, 6$-or $7-\mathrm{H}$), $4.63\left(1 \mathrm{H}, \mathrm{d}, J_{6.7} 6 \mathrm{~Hz}, 7\right.$-or $\left.6-\mathrm{H}\right), 5.93(1$ $\mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H}$), and $6.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ (Found: C, 74.2; H , $9.2 \% ; M^{+}, 388.2609 . \mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{4}$ requires $\mathrm{C}, 74.2 ; \mathrm{H}, 9.3 \% ; M$, 388.2614).

A solution of this ester (65 mg) in ether (900 ml) was purged for 15 min with nitrogen and then irradiated for 35 min , at $5^{\circ} \mathrm{C}$, with an Hanovia medium-pressure mercury-vapour lamp. Fluorenone (73 mg) was then added and irradiation continued for a further 30 min . After removal of the solvent under reduced pressure the yellow semi-crystalline residue was partially purified by chromatography from methanol-chloroform (1:10) on silica impregnated ($3 \% \mathrm{w} / \mathrm{w}$) with silver nitrate. Unchanged 5,7 -diene was separated and the residue (25 mg), dissolved in benzene (15 ml) and ethanol (15 ml), was refluxed (N_{2}) during 2.5 h . After removal of the solvent under reduced pressure at room temperature the residue was purified by p.l.c. using silica containing 3% (w/w) of silver nitrate and acetone-light petroleum ($2: 5$) as the solvent. Elution of the more polar band with ether followed by three repetitions of this process with this
fraction gave methyl $1 \alpha, 3 \beta$-dihydroxy-9,10-seco-24-norchola-$5,7-10(19)$-trien-23-oate (10 mg) as an oil; $\lambda_{\text {max. }} 261.5, \lambda_{\text {min. }} 226.5$ $\mathrm{nm}\left(\varepsilon_{\text {max. }} / \varepsilon_{\text {min. }} 1.55\right)$; $\tau 4.44(1 \mathrm{H}$, br s, $19 E-\mathrm{H}), 5.00(1 \mathrm{H}$, br s, $19 Z-\mathrm{H}), 5.57(1 \mathrm{H}, \mathrm{m}, 1 \beta-\mathrm{H}), 5.77(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H})$, and $6.31(3 \mathrm{H}$, s, $\mathrm{CO}_{2} \mathrm{CH}_{3}$) (Found: $M^{+}, 388.2610 . \mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{4}$ requires M, 388.2614). A solution of this ester (10 mg) in methanol (4 ml) containing potassium hydroxide (0.4 g) was kept $\left(\mathrm{N}_{2}\right)$ at room temperature and the product isolated after 6 h . Purification from ether-light petroleum gave $1 \alpha, 3 \beta$-dihydroxy- 9,10 -seco- 24 -norchola-5,7,10(19)-trien-23-oic acid $(\mathbf{1} ; \mathrm{R}=\mathrm{H}, n=1)(8.7 \mathrm{mg})$ as microprisms, m.p. $122-126^{\circ} \mathrm{C}$ (decomp.). This product was homogenous on t.l.c. and had $\lambda_{\text {max. }} 262(\varepsilon 18000), \lambda_{\text {min. }} 226 \mathrm{~nm}(\varepsilon$ 10000); $\tau 3.57$ and $3.94\left(2 \mathrm{H}, \mathrm{ABq}, J_{6.7} 11 \mathrm{~Hz}, 6-, 7-\mathrm{H}\right), 4.44(1 \mathrm{H}$, br s, $19 E-\mathrm{H}), 4.96(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 19 Z-\mathrm{H})$, $5.54(1 \mathrm{H}, \mathrm{m}, 1 \beta-\mathrm{H}), 5.74(1$ $\mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{m}, 9 \beta-\mathrm{H}), 9.01\left(3 \mathrm{H}, \mathrm{d}, J_{21.20} 6 \mathrm{~Hz}, 21-\right.$ Hz), and $9.41(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{Hz})$. (Found: C, $73.7 ; \mathrm{H}, 9.1 \% ; M^{+}$, 374.2452. $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{4}$ requires $\mathrm{C}, 73.8 ; \mathrm{H}, 9.2 \% ; M, 374.2457$).

$1 \alpha, 3 \beta$-Dihydroxy-9,10-secochola-5,7,10(19)-trien-24-oic

 Acid.-The adduct of methyl 3β-hydroxychola-1,5,7-trien-24oate with 4 -phenyl-1,2,4-triazoline-3,5-dione formed microprisms, m.p. $187-191^{\circ} \mathrm{C}$, from ether; $[\alpha]_{\mathrm{D}}-37^{\circ}$ (c 1.83) [Found: C, 73.4; H, 7.7; N, 8.6\%; $(M+\mathrm{H})^{+}$(FAB) 560. $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires C, $\left.70.8 ; \mathrm{H}, 7.4 ; \mathrm{N}, 7.5 \% ;(M+\mathrm{H})^{+} 560\right]$. The t-butyldimethylsilyl ether of this adduct formed needles, $\mathrm{m} . \mathrm{p} .178^{\circ} \mathrm{C}$, from methanol-methylene chloride (after chromatography); $[\alpha]_{\mathrm{D}}+47.5^{\circ}$ (c 3.00) (Found: C, 69.4; H, 8.2; N, 6.3. $\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}$ requires $\mathrm{C}, 69.5 ; \mathrm{H}, 8.2 ; \mathrm{N}, 6.2 \%$).The $1 \alpha, 2 \alpha$-epoxide of this silyl ether formed needles, m.p. $174{ }^{\circ} \mathrm{C}$, from methanol-methylene chloride; $[\alpha]_{\mathrm{D}}-53^{\circ}$ (c 2.14) [Found: C, 68.1; H, 8.1; N, 6.2\%; $(M+\mathrm{H})^{+}(\mathrm{FAB}) 690$. $\mathrm{C}_{39} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}$ requires $\mathrm{C}, 67.9 ; \mathrm{H}, 8.0 ; \mathrm{N}, 6.1 \% ;(M+$ $\mathrm{H})^{+} 690$.

This desilylated epoxide formed needles, m.p. 142-143 ${ }^{\circ} \mathrm{C}$ (decomp.), from acetone; $[\alpha]_{D}-55^{\circ}(c 1.19)$ (Found: C, 68.4; H, 7.2; N, $7.5 \% ;(M+\mathrm{H})^{+}(\mathrm{FAB}) 576 . \mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires C, $\left.68.8 ; \mathrm{H}, 7.2 ; \mathrm{N}, 7.3 \% ;(M+\mathrm{H})^{+} 576\right]$.

Removal of the triazoline residue from this epoxide gave methyl 3β-hydroxy-1 $\alpha, 2 \alpha$-epoxychola-5,7-dien-24-oate as plates, m.p. $146-148^{\circ} \mathrm{C}$, from ether-methanol; $[\alpha]_{\mathrm{D}}-110^{\circ}$ (c 0.43) (Found: C, 75.0; H, 9.1; $M^{+}, 400.2609 . \mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{4}$ requires C, $75.0 ; \mathrm{H}, 9.1 \%, M, 400.2613$). Hydrolysis of this ester to 3β -hydroxy-1 $\alpha, 2 \alpha$-epoxychola-5,7-dien-24-oic acid during 4.5 h , gave clusters of needles, m.p. $188-190^{\circ} \mathrm{C}$ (decomp.), from ether; $[\alpha]_{\mathrm{D}}-92^{\circ}(c 0.61)$ (Found: C, $73.9 ; \mathrm{H}, 8.7 \% ; M^{+}$, $386.2463 . \mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{4}$ requires $\mathrm{C}, 74.6 ; \mathrm{H}, 8.8 \% ; M, 386.2457$).
$1 \alpha, 3 \beta$-Dihydroxychola-5,7-dien-24-oic acid formed needles, m.p. $227-228^{\circ} \mathrm{C}$ (decomp.), from aqueous tetrahydrofuran; $[\alpha]_{\mathrm{D}}-120^{\circ}$ (c 0.83 in tetrahydrofuran) (Found: C, 74.1; H, $9.2 \% ; M^{+}, 388.2611 . \mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{4}$ requires C, $74.2 ; \mathrm{H}, 9.3 \%$; $M, 388.2613$).

The methyl ester of this acid separated from acetone-light petroleum as needles, m.p. $120^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-70^{\circ}$ (c 1.25) (Found: $\mathrm{C}, 74.3 ; \mathrm{H}, 9.4 \% ; \mathrm{M}^{+}$, 402.2770. $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{4}$ requires C, $74.6 ; \mathrm{H}$, $9.5 \% ; M, 402.2770$).

Prepared from this ester (0.1 g), pyridine (20 ml), 4(dimethylamino)pyridine (0.2 g), and acetic anhydride (20 ml), methyl $1 \alpha, 3 \beta$-diacetoxychola-5,7-dien-24-oate (0.09 g) formed needles, m.p. $142^{\circ} \mathrm{C}$, from methanol-methylene chloride; $[\alpha]_{\mathrm{D}}$ -29° (c 1.19) (Found: C, 71.3; H, 8.6\%; $M^{+}, 486.2981$. $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{6}$ requires $\mathrm{C}, 71.6 ; \mathrm{H}, 8.7 \% ; M, 486.2981$).

Photolysis of this ester (81.7 mg) as for the 24 -nor analogue gave methyl $1 \alpha, 3 \beta$-diacetoxy-9,10-secochola-5,7,10(19)-trien-24oate (15 mg) as an oil, $\lambda_{\text {max. }} 264 \mathrm{~nm}(\varepsilon 18000) . \tau 3.63,4.08(2 \mathrm{H}$, $\left.\mathrm{ABq}, J_{6.7} 11 \mathrm{~Hz}, 6-, 7-\mathrm{H}\right), 4.52\left(1 \mathrm{H}, \mathrm{t}, J_{1.2 \alpha} 5 \mathrm{~Hz} J_{1.2 \mathrm{\beta}} 5 \mathrm{~Hz}, 1 \beta-\right.$ H), $4.68(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 19 \mathrm{Z}-\mathrm{H}), 4.81(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H}), 4.95(1 \mathrm{H}, \mathrm{bs} H-$ $19 \mathrm{E}), 6.63\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 7.21(1 \mathrm{H}, \mathrm{m}, 9 \beta-\mathrm{H}), 7.95(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCOCH}_{3}\right), 7.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCOCH}_{3}\right), 9.08\left(3 \mathrm{H}, \mathrm{d}, J_{21.20} 4.4 \mathrm{~Hz}\right.$,
$21-\mathrm{H}_{3}$), and 9.48 ($3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}$) (Found: $\mathrm{M}^{+}, 486.2986$. $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{6}$ requires $M, 486.2981$).

Hydrolysis of this ester (15 mg) gave $1 \alpha, 3 \beta$-dihydroxy-9,10-secochola-5,7,10(19)-trien-24-oic acid (11.4 mg) as microprisms, m.p. $\quad 117-120^{\circ} \mathrm{C}$ (decomp.), from ether-light petroleum; $\lambda_{\text {max. }} 263$ ($\varepsilon 18200$), $\lambda_{\text {min. }} 227 \mathrm{~nm}(\varepsilon 10400) ; \tau 3.58,3.96(2 \mathrm{H}$, $\left.\mathrm{ABq}, J_{6.7} 11.6 \mathrm{~Hz}, 6-\mathrm{H}, 7-\mathrm{H}\right), 4.65(1 \mathrm{H}, \mathrm{bs}, 19 E-\mathrm{H}), 4.97(1 \mathrm{H}, \mathrm{bs}$, $19 Z-\mathrm{H}), 5.54(1 \mathrm{H}, \mathrm{m}, 1 \beta-\mathrm{H}), 5.75(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{m}$, $9 \beta-\mathrm{H}), 9.05\left(\mathrm{H}, \mathrm{d}, J_{21.20} 5.5 \mathrm{~Hz}, 21-\mathrm{H}_{3}\right)$, and $9.45\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right)$ (Found: C, 74.4; H, 9.3; $M^{+}, 388.2621 . \mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{4}$ requires C, $74.2 ; \mathrm{H}, 9.3 \% ; M, 388.2613$).

$1 \alpha, 3 \beta$-Dihydroxy-9,10-seco-25-homochola-5,7,10(19)-trien-

 25 -oic acid.-The adduct of methyl 3β-hydroxy- 25 -homo-chola-1,5,7-trien-25-oate and 4-phenyl-1,2,4-triazoline-3,5-dione formed small prisms, m.p. $153-155^{\circ} \mathrm{C}$ (decomp.), from aqueous acetone; $[\alpha]_{\mathrm{D}}-35^{\circ}(c 3.01)$ [Found: $\mathrm{C}, 69.1 ; \mathrm{H}, 7.4 ; \mathrm{N}$, $6.0 ;(M+H)^{+}(\mathrm{FAB}) 574 . \mathrm{C}_{34} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires C, 71.2; H, 7.6; $\left.\mathrm{N}, 7.3 \% ;(M+\mathrm{H})^{+} 574\right]$.The dimethyl-t-butylsilyl ether of this adduct was an oil, having inter alia $\tau 2.65(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.68\left(2 \mathrm{H}, \mathrm{ABq}, J_{6.7} 8 \mathrm{~Hz}, 6-\right.$, $7-\mathrm{H}), 4.34(2 \mathrm{H}$, br s, $1-, 2-\mathrm{H}), 5.05(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H}), 6.33(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{CH}_{3}$), and $9.14\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{\mathrm{t}}\right)$.

The $1 \alpha, 2 \alpha$-epoxide of this ether also failed to crystallise and exhibited inter alia $\tau 3.62(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 3.72\left(2 \mathrm{H}, \mathrm{ABq}, J_{6.7} 8 \mathrm{~Hz}\right.$, 6 -, 7-H), 6.77 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), $6.84\left(2 \mathrm{H}, \mathrm{q}, J_{1.2} 4.4 \mathrm{~Hz}, J_{2.1} 4.5\right.$ $\mathrm{Hz}, 2-\mathrm{H}$).

The desilylated epoxide formed needles, m.p. $194-195{ }^{\circ} \mathrm{C}$ (decomp.), from acetone-light petroleum; $[\alpha]_{\mathrm{D}}-70^{\circ}$ (c 1.13); τ $2.58(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.68\left(2 \mathrm{H}, \mathrm{ABq}, J_{6,7} 8 \mathrm{~Hz}, 6-, 7-\mathrm{H}\right), 4.96(1 \mathrm{H}$, $\mathrm{m}, 3 \alpha-\mathrm{H}), 6.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 6.76\left(1 \mathrm{H}, \mathrm{dd}, J_{4 \alpha .4} 14.8 \mathrm{~Hz}\right.$, $\left.J_{3.4 \alpha} 9 \mathrm{~Hz}, 4 \alpha-\mathrm{H}\right)$, and $6.78(2 \mathrm{H}, \mathrm{br}$ s, 1-, 2-H) [Found: C, $69.3 ; \mathrm{H}$, 7.4; N, 7.1; $(M+\mathrm{H})^{+}(\mathrm{FAB}) 590 . \mathrm{C}_{34} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires C, 69.2; $\left.\mathrm{H}, 7.4 ; \mathrm{N}, 7.1 \% ;(M+\mathrm{H})^{+} 590\right]$. After removal of the triazoline residue from this adduct, methyl $1 \alpha, 2 \alpha$-epoxy- 3β-hydroxy- 25 -homochola-5,7-dien-25-oate formed a non-crystallisable oil; $[\alpha]_{\mathrm{D}}$ $-110^{\circ}(c 0.95) ; \lambda_{\text {max. }} 260.5$ ($\varepsilon 8020$), 268 (11000), 279 (11300), and $290 \mathrm{~nm}(6320)$, $\lambda_{\text {min. }} 273.5 \mathrm{~nm}(\varepsilon 9450) ; \tau 4.27\left(\mathrm{H}, \mathrm{d}, J_{6.7} 6\right.$ $\mathrm{Hz}, 6-$ or $7-\mathrm{H}), 6.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.58(1 \mathrm{H}, \mathrm{m}, 7$ - or $6-\mathrm{H})$, and 6.67 and $6.96\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{H}_{1.2} 3.8 \mathrm{~Hz}, 2-, 1-\mathrm{H}\right)$ (Found: M^{+}, 414.2770. $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{4}$ requires $M, 414.2770$).
$1 \alpha, 2 \alpha$-Epoxy-3 β-Hydroxy-25-homochola-5,7-dien-25-oic acid formed needles, m.p. $182-183^{\circ} \mathrm{C}$ (decomp.) from acetone-light petroleum; $[\alpha]_{\mathrm{D}}-74^{\circ}$ (c 0.89) (Found: C, $74.8 ; \mathrm{H}, 9.0 \% ; M^{+}$, 400.2613. $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{4}$ requires C, $75.0 ; \mathrm{H}, 9.1 \% ; M, 400.2614$).
$1 \alpha, 3 \beta$-Dihydroxy-25-homochola-5,7-dien-25-oic acid formed needles, m.p. $213{ }^{\circ} \mathrm{C}$ (decomp.), from aqueous methanol; $[\alpha]_{\mathrm{D}}$ -150° (c 1.22 in tetrahydrofuran); $v_{\text {max }} 3405 \mathrm{~cm}^{-1}$ (OH) (Found: C, $74.0 ; \mathrm{H}, 9.5 \% ; M^{+}, 402.2767 . \mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{4}$ requires C , 74.6 ; H, 9.5% M, 402.2770).

The methyl ester separated from acetone-light petroleum as needles, m.p. $112{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-117^{\circ}(c 0.93)$ (Found: C, $75.2 ; \mathrm{H}$, $9.60 \% ; M^{+}, 416.2931 . \mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{4}$ requires $\mathrm{C}, 75.0 ; \mathrm{H}, 9.7 \% ; M$, 416.2927).

Methyl 1x,3ß-diacetoxy-25-homochola-5,7-dien-25-oate separated from ether-methanol as needles, m.p. $137^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}$ -48° (c 1.16); $\tau 4.28\left(1 \mathrm{H}, \mathrm{d}, J_{6.7} 6 \mathrm{~Hz}, 6-\right.$ or $\left.7-\mathrm{H}\right), 4.58(1 \mathrm{H}, \mathrm{m}$, 7 - or $6-\mathrm{H}$), $4.97(2 \mathrm{H}, \mathrm{m}, 1-, 2-\mathrm{H}), 6.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 7.90$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{OCOMe}$), 7.96 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCOMe}$). (Found: C, 71.9 ; H, 8.8%; $M^{+}, 500.3142 . \mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{6}$ requires $\mathrm{C}, 72.0 ; \mathrm{H}, 8.9 \% ; M$, 500.3138).

Photolysis of this ester (95 mg) gave methyl-1 $\alpha, 3 \beta$-diacetoxy-9,10-seco-25-homochola-5,7,10(19)-trien-25-oate (14 mg) as an oil; $\lambda_{\text {max }} 264 \mathrm{~nm}(\varepsilon 18000) ; \tau 3.64,4.09\left(2 \mathrm{H}, \mathrm{ABq}, J_{6.7} 11 \mathrm{~Hz}, 6\right.$-, $7-\mathrm{H}), 4.53\left(1 \mathrm{H}, \mathrm{t}, J_{1.2 \alpha} 5 \mathrm{~Hz}, J_{1.2 \beta} 5 \mathrm{~Hz}, 1 \beta-\mathrm{H}\right), 4.69(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $19 E-\mathrm{H}), 4.83(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H}), 4.96(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 19 Z-\mathrm{H}), 6.32(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 7.21(1 \mathrm{H}, \mathrm{m}, 9 \beta-\mathrm{H}), 7.95(3 \mathrm{H}, \mathrm{s}, \mathrm{OCOMe})$, and 7.97 (3
$\mathrm{H}, \mathrm{s}, \mathrm{OCOMe}$) (Found: $M^{+}, 500.3147 . \mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{6}$ requires M, 500.3138).

Hydrolysis of this ester (13.1 mg) gave $1 \alpha, 3 \beta$-dihydroxy- $9,10-$ seco-25-homochola-5,7,10(19)-trien-25-oic acid (10 mg) as micro-needles, m.p. $97-101^{\circ} \mathrm{C}$, from ether-light petroleum; $\lambda_{\text {max. }} 264 \mathrm{~nm}(\varepsilon 18300), \lambda_{\text {min. }} 228 \mathrm{~nm}(10300) ; \tau 3.58,3.96(2 \mathrm{H}$, $\left.\mathrm{ABq}, J_{6.7} 11.6 \mathrm{~Hz}, 6-, 7-\mathrm{H}\right), 4.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 19 E-\mathrm{H}), 4.97(1 \mathrm{H}$, br $\mathrm{s}, 19 Z-\mathrm{H}), 5.55(1 \mathrm{H}, \mathrm{m}, 1 \beta-\mathrm{H}), 5.75(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H})$, and $7.19(1$ $\mathrm{H}, \mathrm{m}, 9 \beta-\mathrm{H}$) (Found: $\mathrm{C}, 74.6 ; \mathrm{H}, 9.6 \% ; \mathrm{M}^{+}, 402.2772 . \mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{4}$ requires $\mathrm{C}, 74.6 ; \mathrm{H}, 9.5 \% ; M, 402.2770$).

2,2,2-Trichloroethyl 3-Acetoxychola-1,3,5,7-tetraen-24-

 oate.-Hydrolysis of methyl 3-oxo-5x-chol-7-en-24-oate (1.84 g) in methanol (200 ml) containing potassium hydroxide (10 g) at $20^{\circ} \mathrm{C}$ during 12 h gave 3 -oxo- $5 \alpha-$ chol- 7 -en- 24 -oic acid (1.63 g) which formed plates, m.p. 205- $207^{\circ} \mathrm{C}$ (decomp.) from acetone (Found: C, 77.5; H, 9.9. $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{3}$ requires $\mathrm{C}, 77.4, \mathrm{H}, 9.7 \%$). A solution of this acid (1.63 g) in methylene chloride (80 ml) containing pyridine (0.7 g), 2,2,2-trichloroethanol (1.3 g) and dicyclohexylcarbodi-imide (0.9 g) was stirred overnight to yield 2,2,2-trichloroethyl-3-oxo-5 α-chol-7-en-24-oate (1.3 g) as plates, m.p. $122^{\circ} \mathrm{C}$, from methanol containing a trace of pyridine; $[\alpha]_{\mathrm{D}}$ $+25^{\circ}(c 1.62)$ (Found: C, 62.0; H, 7.3\%; $M^{+}, 502.1810$. $\mathrm{C}_{26} \mathrm{H}_{37}{ }^{35} \mathrm{Cl}_{3} \mathrm{O}_{3}$ requires C, $62.0 \mathrm{H}, 7.4 \% ; M, 502.1808$).Bromination of this ketone (0.6 g) with tri- N -methylanilinium perbromide (4.13 g) gave $2,2,2$-trichloroethyl $2 \xi, 4 \xi$-dibromo-3-oxo-5 α-chol-7-en-24-oate (0.46 g) as microprisms, m.p. 163$165^{\circ} \mathrm{C}$ (decomp.), from light petroleum-ether; $[\alpha]_{\mathrm{D}}-47.0^{\circ}$ (c 1.26) (Found: $\mathrm{C}, \quad 47.2 ; \quad \mathrm{H}, \quad 5.3 \% ; M^{+}, 661.9969$. $\mathrm{C}_{26} \mathrm{H}_{35}{ }^{79} \mathrm{Br}^{81} \mathrm{Br}^{35} \mathrm{Cl}_{2}{ }^{37} \mathrm{ClO}_{3}$ requires, $\mathrm{C}, 47.2 ; \mathrm{H}, 5.3 \% ; M$, 661.9968). Prepared from this dibromide 2,2,2-trichloroethyl-3-oxochola-1,4,7-trien-24-oate formed a yellow oil (Found: M^{+}, 499.1569. $\mathrm{C}_{25} \mathrm{H}_{34}{ }^{35} \mathrm{Cl}_{3} \mathrm{O}_{3}$ requires $M, 499.1574$).

Prepared from this ketone (1.6 g), 2,2,2-trichloroethyl-3-
acetoxychola-1,3,5,7-tetraen-24-oate (1.6 g) formed pale yellow needles, m.p. $150-152^{\circ} \mathrm{C}$, from ether-methanol containing 0.01% pyridine; $[\alpha]_{\mathrm{D}}-430^{\circ}$ (c 2.32) (Found: C, 61.9; H, 6.7\%; $M^{+}, 540.1605 . \mathrm{C}_{28} \mathrm{H}_{35}{ }^{35} \mathrm{Cl}_{3} \mathrm{O}_{4}$ requires C, $62.1 ; \mathrm{H}, 6.5 \% ; M$, 540.1601).

Acknowledgements

We are indebted to the S.E.R.C. for a studentship (to B. R. de C.) and to the British Council for awards to two of us (N. T. M. and N. M.). Glaxo Research Ltd. kindly prepared a large batch of 5,6-dihydroergosterol.

References

1 Part 11, J. M. Midgley, R. M. Upton, R. A. Watt, W. B. Whalley, and XM. Zhang, J. Chem. Res. (S), 1983, 273; (M), 2513.

2 Inter alia. 'Vitamin D: Basic Research and its Clinical Applications: Proceedings of the Fourth Workshop on Vitamin D,' A. W. Norman, K. Schaefer, D. Herrath, H. G. Grigoleit, J. W. Coburn, H. F. DeLuca, E. B. Mawr, and T. Suda, Walter de Gruyter (Berlin), 1979, p. 445.

3 R. P. Esvelt, H. K. Schnoes, and H. F. DeLuca, Biochemistry, 1979, 18, 3977.

4 R. P. Esvelt, M. A. Fivizzani, H. E. Paaren, H. K. Schnoes, and H. F. DeLuca, J. Org. Chem., 1981, 46, 456.
5 N. Koizumi, M. Morisaki, N. Ikekawa, Y. Tanake, and H. F. DeLuca, J. Steroid Biochem., 1979, 10, 261.

6 A. Emke, D. Hands, J. M. Midgley, and W. B. Whalley, J. Chem. Soc.. Perkin Trans. 1, 1977, 820.
7 W. Sucrow and B. Girgensohn, Chem. Ber., 1970, 103, 745.
8 M. J. T. Robinson and W. B. Whalley, Tetrahedron, 1963, 19, 2123 and references cited therein.
9 A. B. Garry, J. M. Midgley, W. B. Whalley, and B. J. Wilkins, J. Chem. Soc., Perkin Trans. 1, 1977, 809.

Received 27th September 1984; Paper 4/1664

